Appeal No. 2003-0405 Page 8 Application No. 09/635,183 which responsively controls inverter 12 via command line 16 to provide power to motor 18 and thereby provide motive drive force to drive wheels 24 and 26. In Kidston's brake system 15, hydraulic brake system 17 comprises master cylinder 78, hydraulic lines 40, 42, 86, 87, 94 and 96, accumulator 92, actuators 114 and 116, solenoid valves 102 and 104, brake calipers 36 and 38 and brake discs 32 and 34. Responding to operator depression of brake pedal 70, brake control 66 provides brake information to motor control 22 and controls hydraulic brake system 17, including solenoid valves 102 and 104, actuators 114 and 116, and electric rear brakes 48 and 50. Bypass valves 98 and 100 allow excess pressure from actuators 114 and 116 to flow to accumulator 92. Brake control 66 also monitors the rotational speeds of vehicle wheels 24, 26, 44 and 46 through speed sensors 28, 30, 52 and 54. Kidston teaches (column 7, lines 9-51) that: Next, brake control determines how much regenerative braking (blend) to request from motor control 22 in subroutine DETERMINE REQUEST BLEND REGEN <208>. This subroutine is described in detail below with reference to the flow chart of FIG. 8. When the REQUEST BLEND REGEN torque is determined, a signal thereof is sent to motor control 22 <208> over dedicated PWM communication line 60. Motor control 22 derives and returns the ACHIEVED BLEND REGEN as previously described; and brake control 66 receives the ACHIEVED BLEND REGEN torque signal <212> over dedicated PWM communication line 62 and calculates <214> the FRONT FRICTION BRAKE TORQUE as the FRONT BRAKE TORQUE, determined in task 206, minus the ACHIEVED BLEND REGEN torque received from motor control 22. This may be better understood with reference to the graph of FIG. 9. This graph depicts threePage: Previous 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 NextLast modified: November 3, 2007