Appeal No. 1998-1533 Page 8 Application No. 08/411,202 [i]n order to determine if this geometrical relationship is indicative of a real physical effect, or is merely fortuitous, a set of friction pads 42' and 44', shown in FIG. 5, which had previously squealed at frequencies of 2 to 15 kHz with a median frequency of 7 kHz were beveled on both sides to reduce the footprint of the pad on the rotor to 50% of its original value. When retested using these pads, the brake squealed at 17 to 18 kHz with a median frequency of 17 kHz. FIG. 6 shows that the footprints of beveled pads 42' and 44'. Footprints 82 subtends an angle subtended by three whole adjacent nodal diameters, for the mode having a total of ten nodal diameters a'-j', corresponding to a natural frequency of 16.5 kHz. These experimental results indicated correlation exists between the footprint of the friction pads 42 and 44 on the rotor 12 and the axial mode of rotor vibration that is excited by the pads 42 and 44. Exciting an axial mode of rotor vibration can potentially excite any torsional modes of rotor vibration. However, elementary vibration theory shows that a resonant system is more sensitive to vibration that is less than its natural frequency rather than greater than its natural frequency. Hence, if a higher frequency axial mode is excited, it becomes less likely that lower frequency torsional modes would be excited. Since the ability of the total human population to hear squeals drops off as the frequency increases, sufficiently high frequencies that produce a brake squeal can be disregarded. Thus brake squeal complaints can be expected to decrease as squeal frequency increases. The above test indicated a beneficial effect on brake squeal by decreasing the friction pad footprint since higher and higher axial modes are excited as it decreases, which in turn decreases the possibility of exciting torsional modes. There is, however, a serious objection to gross reductions in friction pad area, namely that wear is substantially increased. What is wanted is a method of obtaining the helpful effect of area reduction, while keeping the actual surface area as large as possible.Page: Previous 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 NextLast modified: November 3, 2007